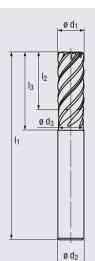
Cut & Form End Mills

NEW tool technology enables simultaneous cutting and polishing

New EMUGE Cut & Form solid carbide finishing end mills feature a patented tool geometry that performs two functions – cutting and polishing in one operation, generating significant manufacturing time and cost savings!

Advantages:

Types of tools:

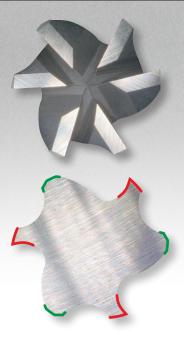

- Enables the production of polished surfaces in a single milling operation with surface grades of N1-N3
- No rework of workpiece required

Cutting diameter 6-12 mmStub and standard lengths

Significant reduction of manufacturing costs

Applications:

- High performance tool for finishing operations only
- Trimming visible 2D contoured surfaces in non-ferrous materials; wrought aluminum alloys, copper and copper alloys
- Production of design surfaces in medical technology, jewelry industry, food and electronics sector


DIN 65	DIN 6527 – Stub length							
ø d ₁ h5	۱ ₂	l ₃	I ₁	ød ₃	ød ₂ h5	Chamfer	Flutes	Tool No.
6	10	16	54	5.8	6	0.12	3	2506.006
8	12	20	58	7.7	8	0.12	3	2506.008
10	14	24	66	9.5	10	0.20	3	2506.010
12	16	26	73	11.5	12	0.20	3	2506.012

DIN 65	27 – St	andard	length					
ø d ₁ h5	۱ ₂	l ₃	I ₁	ød ₃	ød ₂ h5	Chamfer	Flutes	Tool No.
6	13	20	57	5.8	6	0.12	3	2507.006
8	19	25	63	7.7	8	0.12	3	2507.008
10	22	30	72	9.5	10	0.20	3	2507.010
12	26	35	83	11.5	12	0.20	3	2507.012

For the purpose of calculating the feed rate, multiply by 3 flutes

Mirrored surface finishes

Unique, patented tool geometry:

Combination of 3 cutting edges with 3 burnishing edges for smoothing and compacting the material.

Exclusive to Emuge. Learn more at www.emuge.com

Cut & Form End Mills for cutting and polishing in one operation

Applications – Materials				Hardness Range	Material Examples	
		HRC	BHN	N/mm²		
		Non ferrous materials				
		Aluminium alloys				
[1.1			≤ 60	≤ 200	7075
	1.2	Aluminium wrought alloys		≤ 105	≤ 350	6061-T6 / 2024-T4
	1.3			≤ 165	≤ 550	
	1.4	Aluminium cast alloys Si \leq 7%				
[1 .5	Aluminium cast alloys $7\% < Si \le 12\%$				
[1 .6	Aluminium cast alloys $12\% < Si \le 17\%$				
		Copper alloys				
	2 .1	Pure copper, low-alloyed copper		≤ 120	≤ 400	
	2 .2	Copper-zinc alloys (brass, long-chipping)		≤ 165	≤ 550	
	2 .3	Copper-zinc alloys (brass, short-chipping)		≤ 165	≤ 550	
	2 .4	Copper-aluminium alloys (alu bronze, long-chipping)		≤ 235	≤ 800	
	2 .5	Copper-tin alloys (tin bronze, long-chipping) Copper-tin alloys (tin bronze, short-chipping)		≤ 205	≤ 700	
Ν	2 .6	Copper-tin alloys (tin bronze, short-chipping)		≤ 120	≤ 400	
	2 .7	Special copper alloys		≤ 180	≤ 600	
	2 .8		≤ 44	≤ 415	≤ 1400	
		Magnesium alloys				
	3 .1	Magnesium wrought alloys		≤ 150	≤ 500	
	3 .2	Magnesium cast alloys		≤ 150	≤ 500	
		Synthetics				
	4.1	Duroplastics (short-chipping)				
	4 .2	Thermoplastics (long-chipping)				
	4 .3	Fibre-reinforced synthetics (fibre content \leq 30%)				
	4 .4	Fibre-reinforced synthetics (fibre content > 30%)				
		Special materials				
	5 .1	Graphite				
	5 .2	Tungsten-copper alloys				
	5 .3	Composite materials				

The cutting data must be adapted to the material to be machined taking into consideration the clamping of tool and workpiece as well as the natural vibration frequency of component and spindle. For the purpose of calculating the feed rate, multiply by 3 flutes. Contact Emuge for more information.

Material:	6061		
Tool:	2507.010		
Surface roughness:	$R_a^{} = 0.08 \ \mu m \ / \ R_z^{} = 0.46 \ \mu m$		
Surface roughness grade:	N2		
Coolant:	Emulsion		
Cutting speed v _c :	1000 sfm		

Speed n:	10000 rpm
Feed per tooth f _z :	.001"
Feed speed v _f :	28 ipm
Axial depth of cut a _p :	.750"
Radial depth of cut a _e :	.004"

